Issue 7, 2019

A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles

Abstract

New insights in the environmental exposure to nanomaterials have been gained from simulations with recently developed multimedia fate models: atmospheric concentrations are relatively low, and sedimentation in the water column is dominated by aggregation with natural particles, whereas soils and sediments are identified as environmental sinks. These model simulations however have only been performed for a limited set of nanomaterials. It is not yet clear to what extent the new insights gained from the limited set of evaluated nanomaterials generally apply to all nanomaterials. A sensitivity analysis was therefore performed of the nanomaterial environmental fate model SimpleBox4nano in order to investigate to what extent its model simulations are driven by the physicochemical properties of a nanomaterial. Sensitivity plots are drawn to quantify how the nanomaterial physicochemical properties specific weight, diameter, Hamaker constant, transformation rate constant, and attachment efficiency with natural particles, relate to (i) simulated key environmental fate processes such as deposition, filtration, and attachment and (ii) predicted free, bioavailable and total concentrations in air, water, sediment and soil. The critical transformation rate constant and attachment efficiency, at which these processes become dominant for prediction of the exposure concentrations are derived. Although exposure modelling is only part of a full environmental risk assessment of ENPs, they deliver insightful results for further development of ERA approaches by indicating to what extent ENP physicochemical properties affect predicted environmental exposure.

Graphical abstract: A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2019
Accepted
14 May 2019
First published
15 May 2019

Environ. Sci.: Nano, 2019,6, 2049-2060

A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles

J. A. J. Meesters, W. J. G. M. Peijnenburg, A. J. Hendriks, D. Van de Meent and J. T. K. Quik, Environ. Sci.: Nano, 2019, 6, 2049 DOI: 10.1039/C9EN00117D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements