Issue 8, 2019

Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy

Abstract

Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO2 NP interactions with roots for all plant species. Positively charged CeO2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants.

Graphical abstract: Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2019
Accepted
30 Jun 2019
First published
08 Jul 2019

Environ. Sci.: Nano, 2019,6, 2508-2519

Author version available

Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy

E. Spielman-Sun, A. Avellan, G. D. Bland, R. V. Tappero, A. S. Acerbo, J. M. Unrine, J. P. Giraldo and G. V. Lowry, Environ. Sci.: Nano, 2019, 6, 2508 DOI: 10.1039/C9EN00626E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements