Issue 12, 2019

Can cerium oxide serve as a phosphodiesterase-mimetic nanozyme?

Abstract

The enzyme-mimicking activities of nanocrystalline cerium oxide (nanoceria) are well recognized, and its ability to accelerate the dephosphorylation of simple organophosphates and energetically rich biomolecules such as adenosine triphosphate (ATP) has previously been proven. Here, we hypothesized that cerium oxide may also be effective in the cleavage of more-resistant phosphoester bonds, namely, those in 3′,5′-cyclic adenosine monophosphate (cAMP), which mimics the 3′–5′ phosphodiester bonds in nucleic acids well. The nanoceria-accelerated dephosphorylation of cAMP proceeds on the time scale of 102–103 min (compared with 106 years in the absence of cerium oxide) and is only slightly affected by pH. The dephosphorylation activity is highly specific to cerium oxide, as it was not observed with oxides of neighbouring lanthanides (La2O3, Pr6O11, and Nd2O3) or with other metal oxides. The nanoceria also decomposed the organophosphate pesticides parathion and paraoxon methyl and the chemical warfare agents soman and VX. A new model was proposed to describe the activation of dephosphorylation reactions in the presence of (nano)ceria. An unusual phosphatase-mimetic activity resulted from an interplay between properly arranged Ce3+ and Ce4+ cations and cerium-activated hydroxyl groups. The special structural motifs responsible for the phosphatase-mimetic activity are dynamically created and regenerated on the surface of cerium oxide thanks to the Ce3+/Ce4+ switching ability of cerium cations and a flexible oxygen-conducting structure of cerium oxide.

Graphical abstract: Can cerium oxide serve as a phosphodiesterase-mimetic nanozyme?

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2019
Accepted
20 Oct 2019
First published
22 Oct 2019

Environ. Sci.: Nano, 2019,6, 3684-3698

Can cerium oxide serve as a phosphodiesterase-mimetic nanozyme?

P. Janoš, J. Ederer, M. Došek, J. Štojdl, J. Henych, J. Tolasz, M. Kormunda and K. Mazanec, Environ. Sci.: Nano, 2019, 6, 3684 DOI: 10.1039/C9EN00815B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements