Wheat alkylresorcinols protect human retinal pigment epithelial cells against H2O2-induced oxidative damage through Akt-dependent Nrf2/HO-1 signaling
Abstract
The protective effect of wheat alkylresorcinols (ARs) on human retinal pigment epithelium cells (ARPE-19) against oxidative stress and the possible underlying mechanism were investigated in this study. The results showed that ARs significantly inhibited 300 μM H2O2-induced ARPE-19 cell damage and reactive oxygen species (ROS) generation by 19% and 32%, respectively. Moreover, ARs treatment increased NF-E2-related factor 2 (Nrf2) signaling activation, which was evidenced by increased transcription of anti-oxidant responsive genes GCL, NQO1 and HO-1. Knockdown of Nrf2 through targeted siRNA alleviated ARs-mediated HO-1 transcription, and almost abolished ARs-mediated cytoprotection against H2O2 induced cell damage. Further studies showed that the protective effect of ARs was dependent on Akt activation. Taken together, these results demonstrated that ARs could protect ARPE-19 cells from oxidative stress induced cell damage possibly through Akt dependent Nrf2/HO-1 signaling.