Issue 11, 2019

Glycosaminoglycan from Apostichopus japonicus inhibits hepatic glucose production via activating Akt/FoxO1 and inhibiting PKA/CREB signaling pathways in insulin resistant hepatocytes

Abstract

The aim of this study was to elucidate the effect and the underlying mechanism of glycosaminoglycan from Apostichopus japonicus (AHG) on hepatic glucose production (HGP) in insulin resistant hepatocytes. Insulin resistance was induced with high glucose (HG) for 24 h in primary hepatocytes. The results showed that AHG exhibited hypoglycemic activity at a relatively low concentration (1 μg mL−1) and revealed non-toxic activity to insulin resistant hepatocytes even at 500 μg mL−1 concentration. The HGP test showed that the treatment of AHG (10 μg mL−1) for 3 h decreased HGP by 25% in insulin resistant hepatocytes. Quantitative PCR and western blot analysis revealed that AHG also ameliorated phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). The data revealed the mechanism of AHG in alleviating HGP via activating the Akt/FoxO1 signaling pathway and suppressing the PKA/CREB signaling pathway in insulin resistant hepatocytes. This finding suggests that AHG could be a potential marine natural product for the treatment of dysregulating glucose homeostasis.

Graphical abstract: Glycosaminoglycan from Apostichopus japonicus inhibits hepatic glucose production via activating Akt/FoxO1 and inhibiting PKA/CREB signaling pathways in insulin resistant hepatocytes

Article information

Article type
Paper
Submitted
03 Jul 2019
Accepted
23 Sep 2019
First published
09 Oct 2019

Food Funct., 2019,10, 7565-7575

Glycosaminoglycan from Apostichopus japonicus inhibits hepatic glucose production via activating Akt/FoxO1 and inhibiting PKA/CREB signaling pathways in insulin resistant hepatocytes

Y. Chen, H. Liu, Y. Wang, S. Yang, M. Yu, T. Jiang and Z. Lv, Food Funct., 2019, 10, 7565 DOI: 10.1039/C9FO01444F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements