Issue 12, 2019

A facile strategy for photoactive nanocellulose-based antimicrobial materials

Abstract

The prolonged survival of microbes on surfaces in high-traffic/high-contact environments drives the need for a more consistent and passive form of surface sterilization, with the goal of minimizing pathogen transmission. Here, we developed self-disinfecting materials through the covalent attachment of a porphyrin-based photosensitizer (PS) to nanofibrillated cellulose (NFC) and paper (Pap), imparting antimicrobial activity to these renewable scaffolds via photodynamically generated singlet oxygen. The facile covalent attachment of the free-base 5-(4-aminophenyl)-10,15,20-tris-(4-N-methylpyridinium)porphyrin (A3B3+) and metallated [5-(4-aminophenyl)-10,15,20-tris-(4-N-methylpyridinium)porphyrinato]zinc(II) (Zn-A3B3+) photosensitizers was accomplished by aqueous cyanuric chloride coupling, avoiding the use of organic solvents of previous coupling strategies, while preventing PS leaching that is an issue with non-covalent PS incorportation strategies. Materials characterization and the degree of photosensitizer loading were determined by FTIR, elemental and TGA analyses, and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The antimicrobial potencies of the resultant PS-NFC and PS-Pap materials were evaluated against four strains of bacteria recognized by the World Health Organization as either critical or high priority pathogens: Gram-positive strains methicillin-resistant S. aureus (MRSA; ATCC-44) and vancomycin-resistant E. faecium (VRE; ATCC-2320), and Gram-negative strains multidrug-resistant A. baumannii (MDRAB; ATCC-1605) and NDM-1 positive K. pneumoniae (KP; ATCC-2146). Our results demonstrated broad photodynamic inactivation of all strains studied upon illumination (30 min; 65 ± 5 mW cm−2; 400–700 nm) by a minimum of 99.999%. Antiviral studies against two enveloped viruses, dengue-1 (DENV) and vesicular stomatitis virus (VSV), revealed complete inactivation by both materials. Taken together, the results demonstrate the potential for photoactive NFC as the basis for sustainable broad spectrum anti-infective materials.

Graphical abstract: A facile strategy for photoactive nanocellulose-based antimicrobial materials

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2019
Accepted
20 May 2019
First published
23 May 2019

Green Chem., 2019,21, 3424-3435

Author version available

A facile strategy for photoactive nanocellulose-based antimicrobial materials

D. R. Alvarado, D. S. Argyropoulos, F. Scholle, B. S. T. Peddinti and R. A. Ghiladi, Green Chem., 2019, 21, 3424 DOI: 10.1039/C9GC00551J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements