Issue 9, 2019

Transforming technical lignins to structurally defined star-copolymers under ambient conditions

Abstract

Transforming biomass derived components to materials with controlled and predictable properties is a major challenge. Current work describes the controlled synthesis of starcopolymers with functional and degradable arms from the Lignoboost® process. Macromolecular control is achieved by combining lignin fractionation and characterization with ring-opening copolymerization (ROCP). The cyclic monomers used are ε-caprolactone (εCL) and a functional carbonate monomer, 2-allyloxymethyl-2-ethyltrimethylene carbonate (AOMEC). The synthesis is performed at ambient temperature, under bulk conditions, in an open flask, and the graft composition and allyl functionality distribution are controlled by the copolymerization kinetics. Emphasis is placed on understanding the initiation efficiency, structural changes to the lignin backbone and the final macromolecular architecture. The present approach provides a green, scalable and cost effective protocol to create well-defined functional macromolecules from technical lignins.

Graphical abstract: Transforming technical lignins to structurally defined star-copolymers under ambient conditions

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2019
Accepted
03 Apr 2019
First published
04 Apr 2019

Green Chem., 2019,21, 2478-2486

Transforming technical lignins to structurally defined star-copolymers under ambient conditions

P. Olsén, M. Jawerth, M. Lawoko, M. Johansson and L. A. Berglund, Green Chem., 2019, 21, 2478 DOI: 10.1039/C9GC00835G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements