Issue 9, 2019

Metal-free nitrogen -doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions

Abstract

Herein, a highly stable, porous, multifunctional and metal-free catalyst was developed, which exhibited significant catalytic performance in the oxidation of amines and transfer hydrogenation of nitriles under mild conditions; this could be attributed to the presence of numerous active sites and their outstanding BET surface area. The obtained results showed that most of the yields of imines exceeded 90%, and the cycling performance of the catalyst could be at least seven runs without any decay in the reaction activity, which could be comparable to those of metal catalysts. Subsequently, a kinetic study has demonstrated that the apparent activation energy for the direct synthesis of imines from amines is 67.39 kJ mol−1, which has been performed to testify that the catalytic performances are rational. Via catalyst characterizations and experimental data, graphitic-N has been proven to be the active site of the catalyst. Hence, this study is beneficial to comprehend the mechanism of action of a metal-free N-doped carbon catalyst in the formation of imines.

Graphical abstract: Metal-free nitrogen -doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2019
Accepted
21 Mar 2019
First published
03 Apr 2019

Green Chem., 2019,21, 2448-2461

Metal-free nitrogen -doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions

K. Wang, P. Jiang, M. Yang, P. Ma, J. Qin, X. Huang, L. Ma and R. Li, Green Chem., 2019, 21, 2448 DOI: 10.1039/C9GC00908F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements