The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance†
Abstract
The selective hydrogenation of furfural (a biomass-derived platform compound, CO versus CC) is an important reaction for the production of chemical intermediates widely used in the polymer industry. Herein, we report three non-precious intermetallic compounds (IMCs) (Ni3Sn1, Ni3Sn2 and Ni3Sn4) derived from a layered double hydroxide (LDH) precursor, which are characterized by a highly uniform dispersion of IMC nanoparticles and display surprisingly improved catalytic performance toward the selective hydrogenation of furfural (CO) to furfuryl alcohol. In particular, the Ni3Sn2 IMC shows optimal catalytic behavior (conversion: 100%; selectivity: 99%), which exceeds that of reported non-precious metal catalysts and is even comparable to that of noble metal catalysts (e.g., Au, Pd and Pt). A combinative investigation based on in situ FT-IR, XANES and Bader charge studies verifies electron transfer from Sn to Ni, facilitating the activation of adsorption of the CO bond on the Ni top site, whilst inhibiting the adsorption of CC. Both experimental studies (in situ FT-IR and catalytic evaluations) and theoretical calculations (DFT calculations and microkinetic modeling) reveal a vertical adsorption configuration of furfural molecules over the Ni3Sn2 IMC, followed by the first hydrogenation at the carbon atom (the rate-determining step) and the second hydrogenation at the oxygen atom. This detailed study of the structure-selectivity relationship is substantiated by virtue of establishing the adsorption configuration of the substrate and the reaction pathway, which paves the way for the rational design and development of high-efficiency heterogeneous catalysts for selective hydrogenation reactions.