Highly regio- and stereoselective synthesis of cyclic carbonates from biomass-derived polyols via organocatalytic cascade reaction†
Abstract
The cascade reaction of CO2, vicinal diols, and propargylic alcohol, was firstly achieved by dual Lewis base (LB) organocatalytic systems involving LB–CO2 adducts and commercially available organic amines. This methodology could overcome the chemical inertness of CO2, providing an alternative route to various functionalized five-membered cyclic carbonates in moderate to high yields under mild reaction conditions (25 °C, 1.0 atm of CO2). More importantly, this method could also be applied for facile and efficient synthesis of chiral polycyclic carbonates from biomass-derived polyols with complete configuration retention of chiral centers. This study provides an environment-friendly, scalable and cost effective protocol to construct value-added cyclic carbonates with multi-functional groups and chiral centers.