Biomass-derived N-doped porous carbon: an efficient metal-free catalyst for methylation of amines with CO2†
Abstract
Developing green, efficient, and low-cost catalysts for methylation of N–H by using CO2 as the C1 resource is highly desired yet remains a significant challenge. Herein, N-doped porous carbons (NPCs) were designed, synthesized, and proved to be an excellent metal-free catalyst for CO2-participated methylation conversion. NPCs were prepared via the pyrolysis of a mixture of tannic acid and urea. Both theoretical calculation and experiment demonstrate that the N species especially pyridinic N and pyrrolic N within NPCs can work as Lewis basic sites for attacking CO2 to weaken the CO bonds and lower the molecule conversion barrier, facilitating the subsequent methylation of N–H to produce, for example, N,N-dimethylaniline. Besides, the unique porous structure can enrich CO2 and accelerate mass transfer, synergistically promoting the conversion of CO2. The optimized NPC(1/5) catalyst, integrating the porous structure and strong Lewis basicity, exhibits excellent catalytic activity for CO2-based methylation reaction under mild conditions (1 bar CO2, 75 °C). Our work, for the first time, demonstrates the feasibility of using NPCs to catalyze the methylation of amino compounds to produce N,N-dimethylamine by exploiting CO2 as the C1 resource.