Issue 5, 2019

Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices

Abstract

Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the timing and extent of chemical delivery to cells in such devices, potentially altering dose–response curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider set of nineteen chemicals using UV-vis or infrared spectroscopy to characterize loss of chemical from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for chemicals with a high octanol–water partition coefficient (log P > 1.85) and low H-bond donor number. Further, by measuring depletion and return of chemical from solution over tens to hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize partitioning into PDMS in terms of binding capacities per unit surface area and both forward and reverse rate constants. These fitted parameters were used to model the impact of PDMS binding on chemical transport and bioavailability under realistic flow conditions and device geometry. The models predict that PDMS binding could alter in-device cellular exposures for both continuous and bolus dosing schemes by up to an order of magnitude compared to nominal input doses.

Graphical abstract: Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2018
Accepted
28 Jan 2019
First published
29 Jan 2019

Lab Chip, 2019,19, 864-874

Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices

A. W. Auner, K. M. Tasneem, D. A. Markov, L. J. McCawley and M. S. Hutson, Lab Chip, 2019, 19, 864 DOI: 10.1039/C8LC00796A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements