Issue 3, 2019

Profile analysis of C. elegans rheotaxis behavior using a microfluidic device

Abstract

The directed motility of organisms in response to fluid velocity, which is called rheotaxis, is important in the life cycle of C. elegans, enabling them to navigate their environment and maintain their positions in the presence of adverse flow. Thus, to study the mechanism underlying rheotaxis behavior and reveal information on parasitic diseases, the profile analysis of the rheotaxis response in worm populations with high resolution in well-defined fluid environments is highly desirable. In this work, we presented a rapid and robust microfluidic approach to quantitatively analyze the rheotaxis behavior of worms in response to velocity. The flow-based microfluidic chip contained six helical spline microchannels for generating six flow streams with different flow velocities. Since the worms loaded in the chip would swim upstream into channels, the distribution of the worms in response to the different flow velocities was successfully monitored for the quantitative analysis of their rheotaxis behavior using this microfluidic chip. The results indicated that the rate range of around 50 μm s−1 was the most favorable flow velocity for the wild-type worms. Further, we analyzed ASH neuron-blocked worms and found that the functionally defective ASH neurons inhibited their sensitivity to flow rate. In addition, the rheotaxis analysis of the mutant worms indicated that TRP mechanosensory channels and serotonin signals also play a regulatory role in the rheotaxis response of these worms. Thus, our microfluidic method provides a useful platform to study the rheotaxis behaviors in C. elegans and can be further applied for anti-parasitic drug tests.

Graphical abstract: Profile analysis of C. elegans rheotaxis behavior using a microfluidic device

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2018
Accepted
07 Dec 2018
First published
11 Dec 2018

Lab Chip, 2019,19, 475-483

Profile analysis of C. elegans rheotaxis behavior using a microfluidic device

A. Ge, X. Wang, M. Ge, L. Hu, X. Feng, W. Du and B. Liu, Lab Chip, 2019, 19, 475 DOI: 10.1039/C8LC01087K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements