Issue 4, 2019

Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system

Abstract

This work presents a novel portable, versatile sessile droplet microfluidic (SDMF) device to perform liquid manipulation operations such as confining, splitting and colorimetric detection. Furthermore, chemical isolations based on an aqueous two-phase system (ATPS) for separating an analyte of choice from a complicated sample matrix can be carried out. ATPS extractions can replace conventional liquid–liquid extractions and take away the need for harmful organic solvents. Superhydrophobic (SH) surfaces were fabricated from a commercially available material, Ultra-Ever Dry® (UED®). On these SH surfaces, surface energy traps (SETs) were produced either by air plasma treatment (simultaneously) or laser micromachining (sequentially) to dock/pin an ATPS containing droplet onto the surface. Splitting of droplets or removing a precise volume of the top phase from a pinned extraction system was achieved with a sandwich-chip approach. For this, an additional SET patterned substrate was placed on top of the droplet and subsequently lifted. This multipurpose platform was used to isolate Cd from a mixture of several other metal ions (i.e. Mn, Ni, Cu, Pb, Fe) for its subsequent interference-free detection. An ATPS consisting of sodium sulfate and polyethylene glycol (PEG) as phase forming components and potassium iodine as extractant allowed separation of cadmium with an extraction efficiency of q(Cd2+) = 98.5%. Using a portable, cost-effective, smartphone-based UV/vis spectrometer, Cd was detected with a LoD of 3.4 ppm. Alternatively, the multipurpose platform can also be used as sampling platform for a benchtop UV/vis spectrometer, where a LoD of 0.53 ppm was obtained. Potential applications of the presented platform include sample preparation and separation that can be achieved by aqueous two-phase extractions, such as proteins, antibodies, DNA, cells, organic molecules and metal ions.

Graphical abstract: Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2018
Accepted
31 Dec 2018
First published
09 Jan 2019

Lab Chip, 2019,19, 654-664

Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system

M. Hermann, P. Agrawal, I. Koch and R. Oleschuk, Lab Chip, 2019, 19, 654 DOI: 10.1039/C8LC01121D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements