Issue 3, 2019

Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis

Abstract

We demonstrate a novel materials design approach to achieve unprecedented properties by utilizing nanoscale chemo-mechanical coupling. In particular, by using computer simulations we demonstrate how to engineer ultralow modulus (12 GPa), nearly hysteresis-free, and linear super-elastic metals with a giant elastic strain limit (2.7%) by creating appropriate concentration modulations (CMs) at the nanoscale in the parent phase and by pre-straining to regulate the stress-induced martensitic transformation (MT). The nanoscale CMs created via spinodal decomposition produce corresponding phase stability modulations, suppress autocatalysis in nucleation, impose nano-confinements on growth, and hinder long-range ordering of transformation strain during the MT, which changes the otherwise sharp first-order transition into a smeared, macroscopically continuous transition over a large stress range. The pre-straining generates retained martensitic particles that are stable at the test temperature after unloading and act as operational nuclei in subsequent load cycles, eliminating the stress–strain hysteresis and offering an ultralow apparent Young's modulus. Materials with a high strength and an ultralow apparent Young's modulus have great potential for application in orthopaedic implants.

Graphical abstract: Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis

Supplementary files

Article information

Article type
Communication
Submitted
13 Sep 2018
Accepted
26 Nov 2018
First published
04 Dec 2018
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2019,6, 515-523

Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis

J. Zhu, Y. Gao, D. Wang, J. Li, T. Zhang and Y. Wang, Mater. Horiz., 2019, 6, 515 DOI: 10.1039/C8MH01141A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements