Issue 5, 2019

Laser-driven plasmonic gratings for hiding multiple images

Abstract

Hiding several images in a single printing, which appear selectively at different angles of observation, is of great interest for applications in security, data storage or design. Here, we propose an easy-to-implement ink-free laser-based technique to print nanostructured patterns that encode different grey-level images revealed to the eye at specific observation angles. The angular selectivity is provided by diffraction gratings whose orientation can be continuously controlled at the micrometer scale through self-organization mechanisms triggered by laser light. A diffraction yield allowing easy observation with the naked eye is demonstrated, thanks to the use of a thin TiO2:Ag film that also prevents damage to the substrates. The technology based on laser scanning is demonstrated on transparent and flexible substrates that do not sustain high temperature. This ink-free marking technology is flexible, suited to large surfaces, rapid, and provides unique visual effects on any kind of transparent substrate.

Graphical abstract: Laser-driven plasmonic gratings for hiding multiple images

Supplementary files

Article information

Article type
Communication
Submitted
04 Jan 2019
Accepted
27 Feb 2019
First published
27 Feb 2019

Mater. Horiz., 2019,6, 978-983

Laser-driven plasmonic gratings for hiding multiple images

N. Sharma, M. Vangheluwe, F. Vocanson, A. Cazier, M. Bugnet, S. Reynaud, A. Vermeulin and N. Destouches, Mater. Horiz., 2019, 6, 978 DOI: 10.1039/C9MH00017H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements