Issue 7, 2019

Robust production of 2D quantum sheets from bulk layered materials

Abstract

The production of two-dimensional quantum sheets (2D QSs) from bulk layered materials is highly desired but far from satisfactory. Herein, we report a unified top-down method capable of producing a range of 2D QSs in high yields. The method combines silica-assisted ball-milling and sonication-assisted solvent exfoliation and thus enables production of graphene QSs (GQSs), boron nitride QSs (BNQSs), molybdenum disulfide QSs (MoS2 QSs), and tungsten disulfide QSs (WS2 QSs) in exceedingly high yields of 35.5, 33.6, 30.2, and 28.2 wt%, respectively. The as-produced 2D QSs are confirmed as intrinsic and defect-free by multiple characterization techniques. Such 2D QSs can be collected as powders and then redispersed in a wide range of solvents with high concentration up to 5 mg mL−1. Both (re)dispersions and solid thin films of the 2D QSs exhibit extraordinarily high performance in linear and nonlinear optics. Specifically, the QS (re)dispersions show prominent exciton-, solvent-, and concentration-dependent photoluminescence, while the QS solid thin films demonstrate exciting solid-state fluorescence (with lifetimes up to 3.0 ns) and remarkable nonlinear absorption saturation (with absolute modulation depths up to 59% and saturation intensities down to 6.70 kW cm−2 (0.67 nJ cm−2)). Our method could be applicable to any bulk layered materials and therefore paves the way for mass production and full exploration of 2D QSs.

Graphical abstract: Robust production of 2D quantum sheets from bulk layered materials

Supplementary files

Article information

Article type
Communication
Submitted
20 Feb 2019
Accepted
10 May 2019
First published
10 May 2019

Mater. Horiz., 2019,6, 1416-1424

Robust production of 2D quantum sheets from bulk layered materials

Y. Xu, S. Chen, Z. Dou, Y. Ma, Y. Mi, W. Du, Y. Liu, J. Zhang, J. Chang, C. Liang, J. Zhou, H. Guo, P. Gao, X. Liu, Y. Che and Y. Zhang, Mater. Horiz., 2019, 6, 1416 DOI: 10.1039/C9MH00272C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements