Issue 2, 2019

Starting a subnanoscale tank tread: dynamic fluxionality of boron-based B10Ca alloy cluster

Abstract

Alloying an elongated B10 cluster with Ca is shown to give rise to a dynamically fluxional B10Ca cluster, the latter behaving like a tank tread at the subnanoscale. Computer global search identifies the B10Ca C2 (1A) global-minimum structure, which is chiral in nature and retains the quasi-planar moiety of bare B10 cluster with Ca capped at one side, forming a half-sandwich. The rotation barrier of B10Ca cluster is reduced with respect to B10 by one order of magnitude, down to 1 kcal mol−1 at the PBE0/6-311+G* level, which demonstrates structural fluxionality at 600 K and beyond via molecular dynamics simulations. Structurewise, the Ca alloying in B10Ca cluster generates rhombic defect holes, preactivating the species and making it flexible against deformation. Chemical bonding analyses indicate that the B10Ca cluster is a charge-transfer [B10]2−[Ca]2+ complex, being doubly π/σ aromatic with the 6π and 10σ electron-counting. Such a pattern offers ideal π/σ delocalization and facilitates fluxionality. In contrast, bare B10 cluster has conflicting aromaticity with 6π and 8σ electrons, which is nonfluxional with a barrier of 12 kcal mol−1. Double π/σ aromaticity versus conflicting aromaticity is a key mechanism that distinguishes between fluxional B10Ca and nonfluxional B10 clusters, offering a compelling example that the concept of aromaticity (and double aromaticity) can be exploited to design dynamically fluxional nanosystems.

Graphical abstract: Starting a subnanoscale tank tread: dynamic fluxionality of boron-based B10Ca alloy cluster

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2018
Accepted
06 Nov 2018
First published
07 Nov 2018
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2019,1, 735-745

Starting a subnanoscale tank tread: dynamic fluxionality of boron-based B10Ca alloy cluster

Y. Wang, L. Feng and H. Zhai, Nanoscale Adv., 2019, 1, 735 DOI: 10.1039/C8NA00256H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements