Issue 1, 2019

Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect

Abstract

All-dielectric materials have aroused great interest for their unique light scattering and lower losses compared with plasmonics. Generally, optical properties made by all-dielectric materials can be passively controlled by varying the geometry, size and refractive index at the design stage. Therefore, the realization of active tuning in the field of nanophotonics is important to improve the practicality and achieve light-on-chip technology in the future. Herein, we combine the high refractive index of Si and the phase transition of VO2 to form an active tuning hybrid nanostructure with higher quality factor by depositing Si nanospheres on the VO2 layer with an Al2O3 substrate. As the temperature goes up, the refractive index of the VO2 layer switches from high to low. The scattering intensity of the magnetic dipole resonance of Si nanospheres decreases differently depending on their size, while the intensity of the electric dipole resonance remains almost unchanged. Meanwhile, Fano resonances are observed in the Si nanosphere dimers with a continuous variable Fano lineshape when adjusting the temperature. Mie theory and substrate-induced resonant magneto-electric effects are used to analyze and explain these phenomena. Tuning of the Fano resonance is attributed to the substrate effect from the interaction between Si nanospheres and phase transition of the VO2 layer with temperature. These light scattering properties of such a hybrid nanostructure make it promising for temperature sensing or as a light source at the nanometer scale.

Graphical abstract: Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect

Supplementary files

Article information

Article type
Communication
Submitted
24 Jul 2018
Accepted
30 Aug 2018
First published
31 Aug 2018

Nanoscale Horiz., 2019,4, 148-157

Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect

Y. Huang, J. Yan, C. Ma and G. Yang, Nanoscale Horiz., 2019, 4, 148 DOI: 10.1039/C8NH00198G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements