In search of bioinspired hydrogels from amphiphilic peptides: a template for nanoparticle stabilization for the sustained release of anticancer drugs†
Abstract
The development of potent stimuli-responsive hydrogels has rapidly expanded in the last decades due to their diversified applications in the field of biomedicines. In accordance with this drift, herein, we aimed at modulating a series of amphiphilic peptide analogues with the general formula Me-(CH2)14-CO-NH-CH(X)-COOH, where X = CH2Ph in hydrogelators I (L-Phe) and II (D-Phe) and X = CH2Ph(OH) in hydrogelator III (L-Tyr), which displayed an excellent propensity to immobilize water at room temperature with a minimum gelation concentration of 0.04%/0.05%/0.02% w/v for hydrogelators I–III, respectively, regardless of their configuration at the C-terminal centre. To validate this threshold concentration difference, we performed computational analysis that demonstrated the ability of the side-chains of hydrogelators I and III to remain highly planar with the methylene units of the amphiphile and aromatic rings, promoting favourable correspondence through van der Waals forces and pi–pi stacking. Consequently hydrogelators I and III self-assembled in an ordered organisation superior to hydrogelator II. Furthermore, the spectroscopic and microscopic experiments revealed that the hydrogelators manifested a β-sheet conformation and nanofibrous morphology at the supramolecular level. As observed visually and additionally confirmed by differential scanning calorimetry (DSC) and rheological measurements, the hydrogels exhibited thermo-reversibility, injectability and high mechanical strength. Importantly, these biomaterials were also found to be resistant towards proteolytic degradation and non-cytotoxic in the cell line HEK 293 using a dose-dependant cell viability assay. To date, the development of a structured approach for the release of drugs in a predictable manner from an optimised formulation, using peptide-based hydrogel nanoparticles as a delivery system remains in its infancy. Hence, we developed hydrogel nanoparticles (HNPs) with our fabricated amphiphilic peptides that exploited the weak noncovalent interactions for their fabrication, unlike other cross-linked polymers that require strong covalent or ionic bonds for their formation. Interestingly, the as-synthesized nanoparticles showed an unprecedented ability to release the anticancer drugs 5-fluoro uracil/doxorubicin at physiological conditions depending on the physico-chemical parameters of the drugs. We believe that the reported injectable, biocompatible, amphiphilic peptide-based hydrogels hold future promise as a potential tool to transport drugs to a targeted site at a greater concentration, thus relieving the patient from surgical injury and simultaneously aiding in a faster recovery.