A platform for nanomagnetism – assembled ferromagnetic and antiferromagnetic dipolar tubes†
Abstract
We report an interesting case where magnetic phenomena can transcend mesoscopic scales. Our system consists of tubes created by the assembly of dipolar spheres. The cylindrical topology results in the breakup of degeneracy observed in planar square and triangular packings. As far as the ground state is concerned, the tubes switch from circular to axial magnetization with increasing tube length. All magnetostatic properties found in magnetic nanotubes, in which the dipolar interaction is comparable to or dominant over the exchange interaction, are reproduced by the dipolar tubes including an intermediary helically magnetized state. Besides, we discuss the antiferromagnetic phase resulting from the square arrangement of the dipolar spheres and its interesting vortex state.