Issue 3, 2019

Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air

Abstract

Instability of the perovskite materials, especially in high humidity, is one of the major limitations that hinders the development of perovskite devices. Herein, to eliminate the degradation of perovskite solar cells in humid air, a water-resistant perovskite absorption layer is proposed by introducing a macrocycle-type cyclodextrin material (β-CD) into the films. The β-CD was proved to be capable of facilitating the crystallization of grains and enhancing the stability of the perovskite by forming supramolecular interactions with organic cations through the hydrogen bonding in the perovskite films. Consequently, the average efficiency of the PSCs remarkably increased from 16.19% to 19.98%. The champion solar cell even delivered an efficiency of 20.09%. The PSCs with β-CD exhibited superior long-term stability in ambient air without encapsulation, which retained 90% of the initial efficiency after continuous AM 1.5 illumination in ambient air with 80% humidity for 300 h.

Graphical abstract: Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2018
Accepted
09 Dec 2018
First published
10 Dec 2018

Nanoscale, 2019,11, 1228-1235

Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air

D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang and M. Li, Nanoscale, 2019, 11, 1228 DOI: 10.1039/C8NR07638C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements