Issue 4, 2019

Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach

Abstract

Surface engineering of nanomaterials is a promising tool towards the design of new materials for conversion of solar energy into chemical energy. In this work, we examine the influence of ligand exchange on the photocatalytic performance of solution-processed PbS films. We test different ligands such as oleylamine (OAm), 1,2-ethanedithiol (EDT), 3-mercaptopropionic acid (MPA) and tetrabutylammonium iodide (TBAI). The study demonstrates that PbS films capped with MPA and EDT exhibit 3.5-fold enhanced photocatalytic performance for the photodecomposition of methyl orange upon sunlight exposure. Both band energy alignment and charge carrier transport have a strong impact on the generation of reactive oxygen species (ROS), which play a key role in the photodecomposition process. Moreover, the stability and reusability of the photocatalysts are clearly improved after ligand exchange. We prove how both MPA and EDT provide much more stability to PbS QD films to operate very efficiently up to 8 cycles of photocatalysis. As observed in XPS, the oxidation of PbS is prevented after ligand exchange. We demonstrate how surface chemistry engineering of solution-processed QD films can open a new approach towards the design of highly efficient and stable visible-light-driven photocatalysts, which paves the way to low cost and large area fabrication of high-performance photocatalytic devices.

Graphical abstract: Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2018
Accepted
18 Dec 2018
First published
22 Dec 2018

Nanoscale, 2019,11, 1978-1987

Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach

R. Abargues, J. Navarro, P. J. Rodríguez-Cantó, A. Maulu, J. F. Sánchez-Royo and J. P. Martínez-Pastor, Nanoscale, 2019, 11, 1978 DOI: 10.1039/C8NR07760F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements