Gap-mode excitation, manipulation, and refractive-index sensing application by gold nanocube arrays†
Abstract
The challenges in fabricating two-dimensional metallic nanostructures over large areas, which normally involve expensive and time-consuming nanofabrication techniques, have severely limited the exploration of the related applications based on plasmon-induced effects. Here, we cost-efficiently prepared large-area Au nanocube arrays (NCAs) using only the electrostatic forces between colloidal Au nanocubes and polyelectrolyte layers. This method provides a flexible way for obtaining controlled Au NCAs with various fill fractions and single-cube sizes. When the Au NCAs were arranged to be coupled with a continuous Au film, the plasmonic gap mode could be excited and manipulated, leading to significant and tunable light absorbance from the visible to the near-infrared parts of the spectrum. Besides, the as-prepared Au NCAs were used to construct a prototype refractive-index (RI) sensor, which exhibited excellent stability and sensitivity over 560 nm per RI unit.