Issue 8, 2019

Water super-repellent behavior of semicircular micro/nanostructured surfaces

Abstract

In this article, we report the construction of semicircular micro/nanostructured surfaces. Based on thermodynamic analysis, free energy (FE) and free energy barrier (FEB) as well as equilibrium contact angle (ECA) and contact angle hysteresis (CAH) for four exact wetting states of semicircular micro/nanostructured surfaces are theoretically discussed in detail. Notably, the wetting behavior is closely related to the exact wetting state and the base radius or space of semicircular micro/nanostructure. Furthermore, it is demonstrated that the stable wetting state of the semicircular micro/nanostructured surfaces depends on the microscale and nanoscale ratio of base space and radius. A suitable semicircular micro/nanostructure of the surface may lead to a droplet in the stable Cassie–Cassie (Cc) state. Moreover, an important role of the nanoscale semicircular surfaces in determining water super-repellence is effective in decreasing or increasing the ratio of microscale base space and radius for the Cassie or Wenzel state. Additionally, wetting behaviour of single semicircular micro- and nano-structured surfaces are comparatively investigated. The FE and ECA of micro/nanostructured surfaces are lower or higher than those of the single microstructured surfaces. However, the effects of nanoscale semicircular surfaces on the FEB and CAH mainly rely on the microscale wetting state. Finally, the related experimental results were used to verify our investigation. These results are in good agreement with the experiment, which are helpful in designing the wetting behavior of hierarchical semicircular micro/nano-structured surface.

Graphical abstract: Water super-repellent behavior of semicircular micro/nanostructured surfaces

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2018
Accepted
30 Jan 2019
First published
30 Jan 2019

Nanoscale, 2019,11, 3725-3732

Water super-repellent behavior of semicircular micro/nanostructured surfaces

L. Tie, Z. Guo, Y. Liang and W. Liu, Nanoscale, 2019, 11, 3725 DOI: 10.1039/C8NR09489F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements