Issue 15, 2019

Enhanced magnetism in lightly doped manganite heterostructures: strain or stoichiometry?

Abstract

Lattice mismatch induced epitaxial strain has been widely used to tune functional properties in complex oxide heterostructures. Apart from the epitaxial strain, a large lattice mismatch also produces other effects including modulations in microstructure and stoichiometry. However, it is challenging to distinguish the impact of these effects from the strain contribution to thin film properties. Here, we use La0.9Sr0.1MnO3 (LSMO), a lightly doped manganite close to the vertical phase boundary, as a model system to demonstrate that both epitaxial strain and cation stoichiometry induced by strain relaxation contribute to functionality tuning. The thinner LSMO films are metallic with a greatly enhanced TC which is 97 K higher than the bulk value. Such anomalies in TC and transport cannot be fully explained by the epitaxial strain alone. Detailed microstructure analysis indicates La deficiency in thinner films and twin domain formation in thicker films. Our results have revealed that both epitaxial strain and strain relaxation induced stoichiometry/microstructure modulations contribute to the modified functional properties in lightly doped manganite perovskite thin films.

Graphical abstract: Enhanced magnetism in lightly doped manganite heterostructures: strain or stoichiometry?

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2018
Accepted
04 Mar 2019
First published
14 Mar 2019

Nanoscale, 2019,11, 7364-7370

Author version available

Enhanced magnetism in lightly doped manganite heterostructures: strain or stoichiometry?

R. Mbatang, D. Xue, E. Enriquez, R. Yuan, H. Han, P. Dowden, Q. Wang, E. Fohtung, D. Xue, T. Lookman, S. J. Pennycook and A. Chen, Nanoscale, 2019, 11, 7364 DOI: 10.1039/C8NR09693G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements