Issue 12, 2019

Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting

Abstract

The exploitation of economical and highly efficient bifunctional electrocatalysts to promote oxygen evolution and hydrogen evolution reactions (OER and HER) for water splitting devices is urgently needed. Herein, a series of NiSx (i.e., NiS, Ni3S2, NiS2) nanocrystals with controllable phase and composition have been synthesized via a facile polyol solution process and the corresponding electrocatalytic properties towards OER and HER have been systematically investigated. Electrochemical results reveal that Ni3S2 exhibits superior OER and HER performance to NiS and NiS2, achieving 1.63 V to reach a current density of 10 mA cm−2 in the overall water splitting device, which is comparable to that of noble metal catalysts. Experimental and theoretical calculation investigations demonstrate that the remarkable catalytic properties of Ni3S2 could be attributed to the intrinsic metallic conductivity, abundant active sites and optimal Gibbs free-energy for catalyst-H* for HER. Moreover, a thicker layer of catalytically active species of NiOOH was generated on the surface of Ni3S2 due to the higher proportion of Ni, leading to a better OER performance. These results should shed light on the design and development of low cost and efficient transition metal chalcogenide electrocatalysts through phase and composition regulation for advanced electrochemical energy conversion devices.

Graphical abstract: Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2018
Accepted
25 Feb 2019
First published
25 Feb 2019

Nanoscale, 2019,11, 5646-5654

Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting

X. Zheng, X. Han, Y. Zhang, J. Wang, C. Zhong, Y. Deng and W. Hu, Nanoscale, 2019, 11, 5646 DOI: 10.1039/C8NR09902B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements