Issue 17, 2019

Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells

Abstract

To improve charge separation and enhance open-circuit voltage (Voc) in solid-state quantum-dot sensitized solar cells (QDSCs), gradient-band-gap PbS quantum-dots were first and easily constructed by two-step spin-coating the Pb(NO3)2 solution and the mixed solution of Na2S and 1,2-ethanedithiol via successive ionic layer absorption and reaction (SILAR). The fabricated solid-state gradient-band-gap PbS QDSCs exhibited a Voc of 0.70 V, a short-circuit photocurrent density (Jsc) of 9.65 mA·cm−2, a fill factor (FF) of 0.60, and a photoelectric conversion efficiency (PCE) of 4.08%, while the inverse gradient-band-gap PbS QDSCs showed a Voc of 0.59 V, a Jsc of 5.86 mA·cm−2, an FF of 0.49 and a PCE of 1.69%. By optimization, the best solid-state gradient-band-gap PbS QDSCs achieved a Voc of 0.65 V and a PCE of 6.29% under 1 sun, and a Voc of 0.60 V and a PCE of 7.21% under 0.5 sun. The Voc of 0.65 V was relatively high, and the PCE of 6.29% was the highest value among solid-state QDSCs constructed using SILAR.

Graphical abstract: Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2019
Accepted
04 Apr 2019
First published
05 Apr 2019

Nanoscale, 2019,11, 8402-8407

Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells

C. Ma, C. Shi, K. Lv, C. Ying, S. Fan and Y. Yang, Nanoscale, 2019, 11, 8402 DOI: 10.1039/C9NR00324J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements