Slow polymer diffusion on brush-patterned surfaces in aqueous solution†
Abstract
A model system for the investigation of diffusional transport in compartmentalized nanosystems is described. Arrays of “corrals” enclosed within poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA) “walls” were fabricated using double-exposure interferometric lithography to deprotect aminosilane films protected by a nitrophenyl group. In exposed regions, removal of the nitrophenyl group enabled attachment of an initiator for the atom-transfer radical polymerization of end-grafted POEGMA (brushes). Diffusion coefficients for poly(ethylene glycol) in these corrals were obtained by fluorescence correlation spectroscopy. Two modes of surface diffusion were observed: one which is similar to diffusion on the unpatterned surface and a very slow mode of surface diffusion that becomes increasingly important as confinement increases. Diffusion within the POEGMA brushes does not significantly contribute to the results.