Metal–organic framework derived 3D graphene decorated NaTi2(PO4)3 for fast Na-ion storage†
Abstract
NASCION-type materials featuring super ionic conductivity are of considerable interest for energy storage in sodium ion batteries. However, the issue of inherent poor electronic conductivity of these materials represents a fundamental limitation in their utilization as battery electrodes. Here, for the first time, we develop a facile strategy for the synthesis of NASICON-type NaTi2(PO4)3/reduced graphene oxide (NTP-rGO) Na-ion anode materials from three-dimensional (3D) metal–organic frameworks (MOFs). The selected MOF serves as an in situ etching template for the titanium resource, and importantly, endows the materials with structure-directing properties for the self-assembly of graphene oxide (GO) through a one-step solvothermal process. Through the subsequent carbonization, an rGO decorated NTP architecture is obtained, which offers fast electron transfer and improved Na+ ion accessibility to active sites. Benefiting from its unique structural merits, the NTP-rGO exhibits improved sodium storage properties in terms of high capacity, excellent rate performance and good cycling life. We believe that the findings of this work provide new opportunities to design high performance NASICON-type materials for energy storage.