Issue 12, 2019

Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6

Abstract

Multiferroic materials have the potential to be applied in novel magnetoelectric devices, for example, high-density non-volatile storage devices. During the last decades, research on multiferroic materials was focused on three-dimensional (3D) materials. However, 3D materials suffer from dangling bonds and quantum tunneling in nano-scale thin films. Two-dimensional (2D) materials might provide an elegant solution to these problems, and thus are highly in demand. Using first-principles calculations, we predicted ferromagnetism and electric-field-driving ferroelectricity in the monolayer and even in the few-layers of CuCrP2S6. Although the total energy of the ferroelectric phase of the monolayer is higher than that of the antiferroelectric phase, the ferroelectric phases can be realized by applying a large electric field. Besides the degrees of freedom in the common multiferroic materials, the valley degree of freedom is also polarized, according to our calculations. The spins, electric dipoles and valleys are coupled with each other as shown in the computational results. In our experiment, we observed the out-of-plane ferroelectricity in few-layer CuCrP2S6 (approximately 13 nm thick) at room temperature. 2D ferromagnetism of few-layers is inferred from the magnetic hysteresis loops of the massively stacked nanosheets at 10 K. The experimental observations support our calculations very well. Our findings may provide a series of 2D materials for further device applications.

Graphical abstract: Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6

Supplementary files

Article information

Article type
Communication
Submitted
24 Jan 2019
Accepted
22 Feb 2019
First published
23 Feb 2019

Nanoscale, 2019,11, 5163-5170

Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6

Y. Lai, Z. Song, Y. Wan, M. Xue, C. Wang, Y. Ye, L. Dai, Z. Zhang, W. Yang, H. Du and J. Yang, Nanoscale, 2019, 11, 5163 DOI: 10.1039/C9NR00738E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements