Bi-metal–organic frameworks type II heterostructures for enhanced photocatalytic styrene oxidation†
Abstract
Fabricating heterostructures enhances the photocatalytic performance of metal–organic frameworks (MOFs) due to their excellent light absorption and high efficient charge transfer capacity. In this study, we designed and implemented three-dimensional dendritic UiO-66-NH2@MIL-101(Fe) (UOML) heterostructures as catalysts for photocatalytic styrene oxidation. The UOML catalysts exhibited a well-matched band gap structure and efficient catalytic interface, leading to a remarkable photoexcited carrier separation and catalytic activity. Our results present a promising insight for synthesizing novel MOFs-based catalysts and their applications.