Multifunctional inhibitors of β-amyloid aggregation based on MoS2/AuNR nanocomposites with high near-infrared absorption†
Abstract
Recent advances in nanotechnology have developed a lot of opportunities for biological applications. In this work, multifunctional MoS2/AuNR nanocomposites with unique high NIR absorption were designed via combining MoS2 nanosheets and gold nanorods (AuNRs). The nanocomposites were synthesized through electrostatic self-assembly and showed high stability and good biocompatibility. Then they were used to modulate the aggregation of amyloid-β peptides, destabilize mature fibrils under NIR irradiation, and eliminate Aβ-induced ROS against neurotoxicity. The inhibition and destabilization effects were confirmed by Thioflavin T (ThT) fluorescence assay and transmission electron microscopy (TEM). Cell viability assay and ROS assay revealed that MoS2/AuNR nanocomposites could alleviate Aβ-induced oxidative stress and cell toxicity. More importantly, both MoS2 nanosheets and AuNRs can be used as NIR photothermal agents, MoS2/AuNR nanocomposites have enhanced ability of disrupting Aβ fibrils and improved cell viability by generating local heat under low power NIR irradiation. Our results provide new insights into the design of new multifunctional systems for the treatment of amyloid-related diseases.