In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light†
Abstract
Assembling two-dimensional (2D) nanomaterials into three-dimensional (3D) hierarchical structures with novel functions is challenging and has attracted considerable attention. However, it is quite difficult to obtain complex 3D architectures of 2D materials with a uniform and intact structure using traditional methods, such as hydrothermal/solvothermal methods and direct precipitation methods. Here, we use butterfly wing scales as bio-templates to prepare 3D hierarchical BiOCl/Au wing scales for plasmonic photocatalysis. The as-prepared materials exhibit excellent photodegradation of rhodamine B (RhB) under visible light. The degradation rates of BiOCl microspheres and BiOCl and BiOCl/Au butterfly wing scales are 48.8%, 72.6%, and 93.8%, respectively, within 20-min illumination at the same loading capacities. This excellent performance of BiOCl/Au is attributed to the coupling of enhanced carrier separation efficiency and the effect of localized surface plasmon resonance (LSPR) aroused by 3D metallic structures. This study provides a relatively facile method to obtain complex 3D constructure of 2D materials. It also demonstrates a nature-led route to prepare highly efficient plasmonic photocatalysts.