Issue 28, 2019

Investigating the mechanical properties of GeSn nanowires

Abstract

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1–9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were used to obtain size-dependent Young's moduli and to relate the mechanical characteristics of the alloy nanowires to geometry and Sn incorporation. The mechanical properties of the GeSn nanowires make them highly promising for applications in next generation NEM devices.

Graphical abstract: Investigating the mechanical properties of GeSn nanowires

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2019
Accepted
03 Jul 2019
First published
10 Jul 2019

Nanoscale, 2019,11, 13612-13619

Investigating the mechanical properties of GeSn nanowires

J. Kosmaca, R. Meija, M. Antsov, G. Kunakova, R. Sondors, I. Iatsunskyi, E. Coy, J. Doherty, S. Biswas, J. D. Holmes and D. Erts, Nanoscale, 2019, 11, 13612 DOI: 10.1039/C9NR02740H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements