Issue 19, 2019

Liquid-based memory and artificial synapse

Abstract

The brain is considered as the most efficient computational system, and broadly consists of neurons and synapses. Synapses are spaces between neurons; neurotransmitters move from pre-synaptic neurons to post-synaptic neurons to transfer signals. Active research has been carried out to mimic the functions of the human nervous system using solid materials. However, mimicking the exact functions of human synaptic behaviors using solid-state materials is limited because the movement of neurotransmitters in liquid (real synapses) and solid (artificial synapses) environments is very different. Here, we demonstrate synaptic properties including long-term memory, paired-pulse facilitation, and excitatory post-synaptic current, resembling the properties of neurons in biological systems in a liquid-based resistive-switching memory (LRSM) device with a two-terminal structure designed to function based on silver nitrate (AgNO3) solution. The LRSM device can be utilized in very versatile forms and be fabricated in any shapes since its main component is liquid.

Graphical abstract: Liquid-based memory and artificial synapse

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2019
Accepted
17 Apr 2019
First published
23 Apr 2019

Nanoscale, 2019,11, 9726-9732

Liquid-based memory and artificial synapse

D. Kim and J. Lee, Nanoscale, 2019, 11, 9726 DOI: 10.1039/C9NR02767J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements