Issue 21, 2019

Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures

Abstract

Nanostructures of transition metal di-chalcogenides (TMDCs) exhibit exotic thermal, chemical and electronic properties, enabling diverse applications from thermoelectrics and catalysis to nanoelectronics. The thermal properties of these nanoscale TMDCs are of particular interest for thermoelectric applications. Thermal transport studies on nanotubes and nanoribbons remain intractable to first principles calculations whereas existing classical molecular models treat the two chalcogen layers in a monolayer with different atom types; this imposes serious limitations in studying multi-layered TMDCs and dynamical phenomena such as nucleation and growth. Here, we overcome these limitations using machine learning (ML) and introduce a bond order potential (BOP) trained against first principles training data to capture the structure, dynamics, and thermal transport properties of a model TMDC such as WSe2. The training is performed using a hierarchical objective genetic algorithm workflow to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet. As a representative case study, we perform molecular dynamics simulations using the ML-BOP model to study the structure and temperature-dependent thermal conductivity of WSe2 tubes and ribbons of different chiralities. We observe slightly higher thermal conductivities along the armchair direction than zigzag for WSe2 monolayers but the opposite effect for nanotubes, especially of smaller diameters. We trace the origin of these differences to the anisotropy in thermal transport and the restricted momentum selection rules for phonon–phonon Umpklapp scattering. The developed ML-BOP model is of broad interest and will facilitate studies on nucleation and growth of low dimensional WSe2 structures as well as their transport properties for thermoelectric and thermal management applications.

Graphical abstract: Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures

Article information

Article type
Paper
Submitted
03 Apr 2019
Accepted
19 Apr 2019
First published
20 May 2019

Nanoscale, 2019,11, 10381-10392

Author version available

Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures

H. Chan, K. Sasikumar, S. Srinivasan, M. Cherukara, B. Narayanan and S. K. R. S. Sankaranarayanan, Nanoscale, 2019, 11, 10381 DOI: 10.1039/C9NR02873K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements