Issue 40, 2019

Catalytic trends of nitrogen doped carbon nanotubes for oxygen reduction reaction

Abstract

Replacing the state-of-the-art fuel cell catalyst platinum for a cheaper and abundant alternative would make the hydrogen economy viable. Both nitrogen-doped graphene and nitrogen-doped carbon nanotubes (N-CNT) have been shown to be capable of acting as a metal-free catalyst for the oxygen reduction reaction (ORR). Until now, most of the research has been focused on the nitrogen doping and less on the structure of the nanotubes. Here, density functional theory calculations are used to calculate trends in ORR catalytic activity of graphitic-N-doped CNTs of different sizes and chirality of selected tubes between (4,0) and (20,10). This includes 13 armchair tubes, 17 zig-zag tubes and 42 chiral tubes, or 72 N-CNTs in total. 22 tubes are predicted to have a lower overpotential than the platinum catalyst and 46 tubes have lower overpotential than nitrogen doped graphene. The most active tubes are (14,7), (12,6), and (8,8), and display an overpotential of around 0.35 V, or 0.1 V lower overpotential than predicted on Pt(111) with the same level of theory.

Graphical abstract: Catalytic trends of nitrogen doped carbon nanotubes for oxygen reduction reaction

Article information

Article type
Paper
Submitted
13 Apr 2019
Accepted
28 Sep 2019
First published
30 Sep 2019

Nanoscale, 2019,11, 18683-18690

Catalytic trends of nitrogen doped carbon nanotubes for oxygen reduction reaction

P. M. Gíslason and E. Skúlason, Nanoscale, 2019, 11, 18683 DOI: 10.1039/C9NR03195B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements