Issue 24, 2019

Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers

Abstract

Luminescent materials with high efficiency, narrow emission bandwidth and long emission wavelength have attracted extensive attention in recent years. However, for novel luminescent carbon dots, it is still a major challenge to obtain these properties simultaneously. Here, this type of carbon dot was proposed using 1,4-diaminonaphthalene as the initial source. The carbon dots demonstrate strong orange emission with the highest quantum yield of 82% and an extremely narrow emission bandwidth of 30 nm. It is found that the orange emission of carbon dots is attributed to the high defect amounts including nitrogen and oxygen doping. The high carboxyl group content leads to a high efficiency and the uniform size distribution results in a narrow bandwidth. The carbon dots are used as the gain medium of a whispering gallery mode microcavity laser. A low excitation threshold of 12 kW cm−2 and a high quality factor of ∼3600 can be obtained from the microcavity lasers. This work has provided a didactic example to develop high-quality long emission-wavelength carbon dots with strong emission and an ultra-narrow emission bandwidth, which makes it possible to expand the application of original and high-performance lasers or other optical devices.

Graphical abstract: Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2019
Accepted
21 May 2019
First published
06 Jun 2019

Nanoscale, 2019,11, 11577-11583

Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers

Z. Han, Y. Ni, J. Ren, W. Zhang, Y. Wang, Z. Xie, S. Zhou and S. F. Yu, Nanoscale, 2019, 11, 11577 DOI: 10.1039/C9NR03448J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements