Issue 36, 2019

Imaging dopant distribution across complete phase transformation by TEM and upconversion emission

Abstract

Correlating dopant distribution to its optical response represents a complex challenge for nanomaterials science. Differentiating the “true” clustering nature from dopant pairs formed in statistical distribution complicates even more the elucidation of doping–functionality relationship. The present study associates lanthanide dopant distribution, including all significant events (enrichment, depletion and surface segregation), to its optical response in upconversion (UPC) at the ensemble and single-nanoparticle level. A small deviation from the Er nominal concentration of a few percent is able to induce clear differences in Er UPC emission color, intensity, excited-state dynamics and ultimately, UPC mechanisms, across tetragonal to monoclinic phase transformation in rationally designed Er doped ZrO2 nanoparticles. Rare evidence of a heterogeneous dopant distribution leading to the coexistence of two polymorphs in a single nanoparticle is revealed by Z- and phase contrast transmission electron microscopy (TEM). Despite their spatial proximity, Er in the two polymorphs are spectroscopically isolated, i.e. they do not communicate by energy transfer. Segregated Er, which is well imaged in TEM, is absent in UPC, while the minor phase content overlooked by X-ray diffraction and TEM is revealed by UPC. The outstanding sensitivity of combined TEM and UPC emission to subtle deviations from uniform doping in the diluted concentration regime renders such an approach relevant for various functional oxides supporting lanthanide dopants as emitters.

Graphical abstract: Imaging dopant distribution across complete phase transformation by TEM and upconversion emission

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2019
Accepted
12 Jul 2019
First published
12 Aug 2019

Nanoscale, 2019,11, 16743-16754

Imaging dopant distribution across complete phase transformation by TEM and upconversion emission

D. Avram, C. Colbea, M. Florea, S. Lazar, D. Stroppa and C. Tiseanu, Nanoscale, 2019, 11, 16743 DOI: 10.1039/C9NR04345D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements