Issue 35, 2019

Strong-field nonlinear optical properties of monolayer black phosphorus

Abstract

Within the past few years, atomically thin black phosphorus (BP) has been demonstrated as a fascinating new 2D material that is promising for novel nanoelectronic and nanophotonic applications, due to its many unique properties such as a direct and widely tunable bandgap, high carrier mobility and remarkable intrinsic in-plane anisotropy. However, its important extreme nonlinear behavior and the ultrafast dynamics of carriers under strong-field excitation have yet to be revealed. Herein, we report nonperturbative high harmonic generation (HHG) in monolayer BP by first-principles simulations. We show that BP exhibits extraordinary HHG properties, with clear advantages over three major types of 2D materials under intensive study, i.e., semimetallic graphene, semiconducting MoS2, and insulating hexagonal boron nitride, in terms of HHG cutoff energy and spectral intensity. This study advances the scope of current research activities on BP into a new regime, suggesting its promising future in the applications of extreme-ultraviolet and attosecond nanophotonics and also opening doors to investigate the strong-field and ultrafast carrier dynamics of this emerging material.

Graphical abstract: Strong-field nonlinear optical properties of monolayer black phosphorus

Article information

Article type
Paper
Submitted
10 Jun 2019
Accepted
31 Jul 2019
First published
01 Aug 2019

Nanoscale, 2019,11, 16377-16383

Strong-field nonlinear optical properties of monolayer black phosphorus

Z. Chen and R. Qin, Nanoscale, 2019, 11, 16377 DOI: 10.1039/C9NR04895B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements