Issue 46, 2019

Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness

Abstract

How to significantly increase electromagnetic interference (EMI) shielding performances by improving electrical conductivities is still a serious challenge. Herein, we have explored and prepared a 3D silver platelets/reduced graphene oxide foam (AgPs/rGF) with numerous regular spherical hollow structures, which ingeniously achieved uniform dispersion of the AgPs along the 3D rGO network via the sol–gel template method. Combining AgPs/rGF with epoxy resin (EP), 3D AgPs/rGF/EP nanocomposites with highly regular segregated structures were successfully fabricated. Due to interconnected spherical hollow conductive networks of the AgPs/rGF and the interfacial synergy between AgPs/rGF and EP, the 3D AgPs/rGF/EP nanocomposites containing 0.44 vol% rGF and 0.94 vol% AgPs show the maximum EMI shielding effectiveness (SE) value of 58 dB in the X-band (shielding 99.9998% of incident electromagnetic waves), 274% improvement in comparison with that of 3D rGF/EP nanocomposites (∼21 dB). The corresponding electrical conductivity improves from 0.1 to 45.3 S m−1, and the dielectric loss increases from ∼0.6 to ∼0.8. In addition, the theoretical minimum skin depth of the 3D AgPs/rGF/EP nanocomposites is calculated by analyzing the skin effect. It provides a guideline for fabricating lightweight, thin and multi-functional shielding nanocomposites in the key fields of spacecraft and high precision electronics.

Graphical abstract: Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2019
Accepted
27 Oct 2019
First published
28 Oct 2019

Nanoscale, 2019,11, 22590-22598

Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness

C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, H. Gu, J. Kong, D. Cao and J. Gu, Nanoscale, 2019, 11, 22590 DOI: 10.1039/C9NR06022G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements