Luminescent conjugates between dinuclear rhenium complexes and 17α-ethynylestradiol: synthesis, photophysical characterization, and cell imaging†
Abstract
Three new luminescent conjugates between dinuclear rhenium complexes and an estradiol, namely E2-Re, are described. The derivatives have the general formula [Re2(μ-Cl)2(CO)6(μ-R-pydz-17α-ethynylestradiol)] (R-pydz = functionalized 1,2-pyridazine), where the estradiol moiety is covalently bound to the β position of the pyridazine ligand. Different synthetic pathways are investigated, including the inverse-type [4 + 2] Diels Alder cycloaddition reaction between the electron poor 1,2,4,5-tetrazine and 17α-ethynylestradiol for the synthesis of E2-Re1. The three E2-Re conjugates are purified on silica gel and isolated in a spectroscopically pure form in moderate to good yields (28–50%). All the E2-Re conjugates are comprehensively characterized from the spectroscopic and photophysical points of view. Cellular internalization experiments on human MCF-7 and 231 cells are also reported, displaying interesting staining differences depending on the nature of the spacer linking the estradiol unit to the organometallic fragment. Furthermore, the suitability of these conjugates to also stain simple multicellular organisms, i.e. Ciona intestinalis embryos and larvae at different stages of development, is reported here for the first time.
- This article is part of the themed collection: Chemical Biology in OBC