Issue 12, 2019

Enhancing the kinetics of hydrazone exchange processes: an experimental and computational study

Abstract

The capacity of hydrazone bonds to readily undergo component exchange processes sees their extensive utilization in dynamic combinatorial chemistry. The kinetics of hydrazone exchange are optimal at pH ∼4.5, which limits the use of hydrazone-based dynamic combinatorial libraries, particularly for biological targets which are only stable at near-neutral pH values. It would thus be advantageous if hydrazone exchange proceeded with faster rates at pH values closer to neutral. We experimentally and computationally evaluated the hypothesis that hydrazones possessing neighbouring acidic or basic functional groups within the carbonyl-derived moitety of the hydrazone would enhance exchange rates. Our work suggests that judiciously placed N- or O-hydrogen bond acceptors within the carbonyl-derived moiety of the hydrazone stabilize transition states via hydrogen bonding interactions, providing a valuable boost to exchange kinetics at near-neutral pH values. We anticipate these findings will be of interest in dynamic combinatorial chemistry, dynamic covalent polymers/materials, functionalized nanoparticles and interlocked molecules, all of which may benefit from hydrazone exchange processes able to operate at near-neutral pH values.

Graphical abstract: Enhancing the kinetics of hydrazone exchange processes: an experimental and computational study

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2019
Accepted
25 Feb 2019
First published
26 Feb 2019

Org. Biomol. Chem., 2019,17, 3218-3224

Enhancing the kinetics of hydrazone exchange processes: an experimental and computational study

P. L. Higgs, A. J. Ruiz-Sanchez, M. Dalmina, B. R. Horrocks, A. G. Leach and D. A. Fulton, Org. Biomol. Chem., 2019, 17, 3218 DOI: 10.1039/C9OB00058E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements