Three-state switching in a double-pole change-over nanoswitch controlled by redox-dependent self-sorting†
Abstract
The four-arm nanomechanical switch 1 with four different terminals exhibits two switching arms (contacts A and D) and two distinct stations for binding (contacts B and C). In switching State I, the azaterpyridine arm is intramolecularly coordinated to a zinc(II) porphyrin station (connection A ↔ B) while contact D (a ferrocenylbipyridine unit) and contact C (phenanthroline) remain disconnected. After addition of copper(I) ions (State II) both connections A ↔ B and C ↔ D are established. Upon one-electron oxidation, double-pole change-over switching cleaves both connections A ↔ B & C ↔ D and establishes the new connection A ↔ C (State III). Fully reversible three-state switching (State I → State II → State III → State II → State I) was achieved by adding appropriate chemical and redox stimuli.
- This article is part of the themed collection: Supramolecular chemistry in OBC