Issue 1, 2019

Visible-light-induced degradation of rhodamine B by nanosized Ag2S–ZnS loaded on cellulose

Abstract

In the present work, new visible-light-active nanosized Ag2S–ZnS loaded on cellulose (AZCE) was synthesized by a precipitation method. The AZCE composite was systematically characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area, and UV-visible diffuse reflectance spectroscopy (UV-DRS). The activities of the photocatalysts were evaluated for rhodamine B dye (RhB) degradation under simulated sunlight and the amounts of the dye samples were analysed using a UV-vis spectrophotometer at λmax 554 nm. The effects of the reaction conditions such as pH, catalyst, hydrogen peroxide and dye concentration on the photodegradation rate have been investigated. The degradation profile reveals that 30 ppm of the dye could be effectively oxidized using 30 mg of the AZCE dose in the pH range 4–12 within 90 min. The oxidation of the RhB dye follows first-order kinetics and the rate constant was calculated to be 6.4 × 10−3 min−1. Various organic intermediates were identified during degradation using high performance liquid chromatography (HPLC), total organic content (TOC) and electron-spray ionization-mass spectrometry (ESI-MS). In order to determine the effectiveness of AZCE photocatalytic activity, other catalysts such as Ag2S loaded on cellulose (AZE) and ZnS loaded on cellulose (ZCE) were used as photocatalysts. The results show that photocatalytic activity follows the order AZCE > ACE > ZCE and this is due to the fact that a cellulose network is used as a catalyst carrier. The alkali pre-treated cellulose provides an activated surface hydroxyl groups to enhance the deposition efficiencies of Ag2S and ZnS and thereby a large amount of visible light can be absorbed and the photocatalytic activity is increased.

Graphical abstract: Visible-light-induced degradation of rhodamine B by nanosized Ag2S–ZnS loaded on cellulose

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2018
Accepted
05 Oct 2018
First published
08 Oct 2018

Photochem. Photobiol. Sci., 2019,18, 148-154

Visible-light-induced degradation of rhodamine B by nanosized Ag2S–ZnS loaded on cellulose

P. Kumar T.K.M. and A. Kumar S.K., Photochem. Photobiol. Sci., 2019, 18, 148 DOI: 10.1039/C8PP00330K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements