Issue 30, 2019

Forming layered conjugated porous BBL structures

Abstract

One-dimensional (1D) ladder-like poly(benzoimidazobenzophenanthrolines) (BBLs) have attracted great interest due to their outstanding features, including thermal and chemical stability, electrical conductivity, and optical and electronic properties. Nevertheless, layered conjugated porous BBL structures have not yet been reported to date. Here, we introduce two-dimensional (2D) layered BBL structures via the polycondensation of mellitic anhydride (MTA) as an A3 monomer with 1,2,4,5-tetraaminobenzene (TAB) as the B2 monomer, or hexaaminobenzene (HAB) as the B3 monomer in polyphosphoric acid (PPA). The porous 2D BBL network structures are constructed of robust fused aromatic rings and thus exhibit high thermal stability and high Brunauer–Emmett–Teller (BET) surface areas with different pore diameters and permanent microporosities. The 2D BBL networks demonstrated high gas uptake capacities for hydrogen (H2, 1.65 wt% at 77 K, 1 bar) and carbon dioxide (CO2, 15.6 wt% at 273 K, 1 bar) with unusually high Qst values.

Graphical abstract: Forming layered conjugated porous BBL structures

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2019
Accepted
26 Jun 2019
First published
28 Jun 2019

Polym. Chem., 2019,10, 4185-4193

Forming layered conjugated porous BBL structures

S. Shin, H. Noh, Y. Kim, Y. Im, J. Mahmood and J. Baek, Polym. Chem., 2019, 10, 4185 DOI: 10.1039/C9PY00840C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements