Issue 5, 2019

The mechanistic investigations of photochemical decarbonylations and oxidative addition reactions for M(CO)5 (M = Fe, Ru, Os) complexes

Abstract

The mechanisms for the photochemical CO-dissociation and the oxidative addition reactions are studied theoretically using three model systems: M(CO)5 (M = Fe, Ru, and Os) and the CASSCF/Def2-SVP (fourteen-electron/ten-orbital active space) and MP2-CAS/Def2-SVP//CASSCF/Def2-SVP methods. The structures of the intersystem crossings and the conical intersections, which play a decisive role in these CO photo-extrusion reactions, are determined. The intermediates and the transition structures in either the singlet or triplet states are also computed, in order to explain the reaction routes. These model studies suggest that after the irradiation of Fe(CO)5 with UV light, it quickly loses one CO molecule to generate a 16-electron iron tetracarbonyl, in either the singlet or the triplet states. It is found that the triplet Fe(CO)4 plays a vital role in the formation of the final oxidative addition product, Fe(CO)4(H)(SiMe3), but the singlet Fe(CO)4 plays a relatively minor role in the formation of the final product. However, its vacant coordination site interacts weakly with solvent molecules ((Me3)SiH) to yield the alkyl-solvated iron complexes, which are detectable experimentally. The theoretical observations show that Ru(CO)5 and Os(CO)5 have similar photochemical and thermal potential energy profiles. In particular, this study demonstrates that the oxidative addition yield for Fe is much greater than those for its Ru and Os counterparts, under the same chemical conditions.

Graphical abstract: The mechanistic investigations of photochemical decarbonylations and oxidative addition reactions for M(CO)5 (M = Fe, Ru, Os) complexes

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2018
Accepted
07 Dec 2018
First published
21 Jan 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 2626-2640

The mechanistic investigations of photochemical decarbonylations and oxidative addition reactions for M(CO)5 (M = Fe, Ru, Os) complexes

Z. Zhang and M. Su, RSC Adv., 2019, 9, 2626 DOI: 10.1039/C8RA07669C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements