Issue 6, 2019, Issue in Progress

Effectively enhanced structural stability and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials via poly-(3,4-ethylenedioxythiophene)-in situ coated for high voltage Li-ion batteries

Abstract

Spinel LiNi0.5Mn1.5O4 shows promise as a potential candidate for Li-ion batteries due to its high energy density and high rate performance. However, LiNi0.5Mn1.5O4 (LNMO) spinel oxides usually deliver poor cycle life because of the increasing impedance and gradually dissolving Mn resulting in the destruction of crystal structure. Here, a conductive polymer poly-(3,4-ethylenedioxythiophene) (PEDOT) surface modified strategy is introduced to settle the above challenges. The main purpose is to construct a uniform and dense shell film on the surface of LiNi0.5Mn1.5O4 (Industrial Grade), which is prepared by a simple chemical in situ oxidative polymerization method. The Mn dissolving from the lattice during the long-term cycling is well inhibited as the polymer shell protects LiNi0.5Mn1.5O4 from direct exposure to the highly active electrolyte. As expected, the 3 wt% poly-(3,4-ethylenedioxythiophene) coated sample reveals long cycle life with acceptable capacity of 114.5 mA h g−1 and high capacity retention of 91.6% after 200 cycles, compared to 70.9 mA h g−1 and 56.5%, respectively, for the bare LiNi0.5Mn1.5O4 sample. Furthermore, the coated sample demonstrates a higher capacity of 110 mA h g−1 and 63 mA h g−1 at 5C and 10C rate respectively. The improved performance is believed to be attributed to the formation of high conductivity and stable interface structure between electrolyte and LNMO, which is beneficial to suppress the destruction of crystalline structure due to the Mn dissolution and undesired side-reaction between electrolyte and LiNi0.5Mn1.5O4 in long cycle, and improve simultaneously the conductivity and interface stability of LiNi0.5Mn1.5O4 for high voltage lithium-ion batteries.

Graphical abstract: Effectively enhanced structural stability and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials via poly-(3,4-ethylenedioxythiophene)-in situ coated for high voltage Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2018
Accepted
12 Jan 2019
First published
22 Jan 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 3081-3091

Effectively enhanced structural stability and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials via poly-(3,4-ethylenedioxythiophene)-in situ coated for high voltage Li-ion batteries

J. Liu, Y. Chen, J. Xu, W. Sun, C. Zheng and Y. Li, RSC Adv., 2019, 9, 3081 DOI: 10.1039/C8RA09550G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements