An efficient Nozaki–Hiyama allenylation promoted by the acid derived MIL-101 MOF†
Abstract
A concise synthesis of the sulfonic acid-containing MIL-101 MOF catalyst was reported using commercially available materials. A series of characterization of as-synthesized MIL-101-SO3H including SEM, XRD, FTIR, BET and TGA was also demonstrated. Using MIL-101-SO3H as a catalyst, an efficient Nozaki–Hiyama allenylation reaction was achieved to generate various polyfunctionalized α-allenic alcohols in high yield and good selectivity. Taking advantage of the high acidity of the MIL-101-SO3H MOF structure, such transformations were also achieved under mild reaction conditions and short reaction times. Based on our observed evidence during this study, a mechanism was proposed involving a substrate activation/γ-nucleophilic addition reaction sequence. In addition, the MIL-101-SO3H catalyst can be recycled ten times during the Nozaki–Hiyama allenylation reaction without compromising the yield and selectivity.